Data collection Enraf-Nonius CAD-4 diffractometer  $\omega$  scans Absorption correction:  $\psi$  scan (SHELXTL-Plus; Sheldrick, 1991)  $T_{\min} = 0.642, T_{\max} =$ 

2501 measured reflections

1279 observed reflections  $[F > 4\sigma(F)]$  $R_{\rm int} = 0.0405$  $\theta_{\rm max} = 30.0^{\circ}$  $h = -1 \rightarrow 11$  $k = -1 \rightarrow 12$  $l = -12 \rightarrow 11$ 3 standard reflections monitored every 100 1790 independent reflections reflections intensity decay: none

#### Refinement

0.922

| Refinement on F                                            | Extinction correction:    |
|------------------------------------------------------------|---------------------------|
| R = 0.037                                                  | Larson (1970)             |
| wR = 0.034                                                 | Extinction coefficient:   |
| S = 1.24                                                   | 0.00092 (5)               |
| 1279 reflections                                           | Atomic scattering factors |
| 89 parameters                                              | from International Tables |
| $w = 1/\sigma^2(F)$                                        | for X-ray Crystallography |
| $(\Delta/\sigma)_{\rm max} = 0.001$                        | (1974, Vol. IV, Table     |
| $\Delta \rho_{\rm max} = 0.88 \ {\rm e} \ {\rm \AA}^{-3}$  | 2.3.1)                    |
| $\Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \AA}^{-3}$ |                           |

## Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ $U = (1/2) \sum \sum U e^{\pm} e^{\pm} e^{\pm} e^{\pm}$

| $O_{eq} = (1/3) (2i_j (2i_j) (i_j) $ |            |            |            |           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|------------|-----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | x          | у          | z          | $U_{eq}$  |
| Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1/2        | 1/2        | 1/2        | 0.010(1)  |
| V(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8332(1)  | 0.7876(1)  | 0.6208(1)  | 0.010(1)  |
| V(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6988(1)  | 0.9419(1)  | 0.2395(1)  | 0.012 (1) |
| К                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1413 (2) | 0.8021(1)  | 0.4072(1)  | 0.022 (1) |
| 0(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8158 (5) | 0.9092 (4) | 0.4559 (4) | 0.018 (1) |
| 0(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8492 (5) | 0.8832 (4) | 0.7876 (4) | 0.020 (1) |
| 0(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6613 (5) | 0.6832 (4) | 0.5864 (4) | 0.020(1)  |
| D(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.8339 (4) | 0.9254 (4) | 0.1349 (4) | 0.019 (1) |
| 0(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0239 (5) | 0.6838 (4) | 0.6558 (4) | 0.027 (1) |
| 0(6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.6275 (6) | 1.1057 (4) | 0.2269 (5) | 0.032 (2) |

## Table 2. Selected geometric parameters ( $\mathring{A}$ , °)

|                                          | 0         |                                |           |
|------------------------------------------|-----------|--------------------------------|-----------|
| MnO(3)                                   | 2.118 (4) | V(2)—O(4 <sup>iii</sup> )      | 1.792 (4) |
| MnO(2 <sup>i</sup> )                     | 2.128 (3) | KO(6 <sup>iv</sup> )           | 2.780 (4  |
| $Mn - O(5^{ii})$                         | 2.175 (4) | KO(1 <sup>v</sup> )            | 2.994 (4) |
| V(1)—O(1)                                | 1.781 (3) | KO(1 <sup>vi</sup> )           | 2.887 (4) |
| V(1)—O(2)                                | 1.657 (4) | K—O(2 <sup>in</sup> )          | 2.837 (4) |
| V(1)O(3)                                 | 1.645 (4) | K—O(3 <sup>iii</sup> )         | 2.836 (4) |
| V(1)O(4)                                 | 1.765 (4) | K—O(5 <sup>vii</sup> )         | 2.944 (3) |
| V(2)O(1)                                 | 1.817 (3) | KO(5 <sup>v</sup> )            | 3.026 (3) |
| V(2)O(5)                                 | 1.654 (4) | K—O(4 <sup>v</sup> )           | 2.848 (4) |
| V(2)—O(6)                                | 1.610 (4) |                                |           |
| $O(3)$ — $Mn$ — $O(2^i)$                 | 89.4 (1)  | O(2)—V(1)—O(3)                 | 106.3 (2) |
| $O(3) - Mn - O(2^{iii})$                 | 90.6 (1)  | O(1)—V(1)—O(4)                 | 107.8 (2) |
| O(2 <sup>i</sup> )MnO(2 <sup>iii</sup> ) | 180.0 (1) | O(2)V(1)O(4)                   | 109.5 (2) |
| $O(3) - Mn - O(3^{vui})$                 | 180.0 (1) | O(3)—V(1)—O(4)                 | 111.3 (2) |
| O(3)—Mn— $O(5ii)$                        | 90.8 (1)  | O(1)—V(2)—O(5)                 | 109.3 (2) |
| $O(2^i)$ —Mn— $O(5^{ii})$                | 91.0(1)   | O(1)V(2)O(6)                   | 106.2 (2) |
| $O(2^{m})$ —Mn— $O(5^{n})$               | 89.0(1)   | O(5)—V(2)—O(6)                 | 110.0 (2) |
| $O(3) - Mn - O(5^{vn})$                  | 89.2 (1)  | $O(1) - V(2) - O(4^{iii})$     | 112.4 (2) |
| $O(5^n)$ —Mn— $O(5^{\nu n})$             | 180.0 (1) | O(5)V(2)O(4 <sup>iii</sup> )   | 108.0 (2) |
| O(1)—V(1)—O(2)                           | 108.8 (2) | O(6)—V(2)—O(4 <sup>iii</sup> ) | 111.0 (2) |
| O(1)—V(1)—O(3)                           | 113.0 (2) |                                |           |
|                                          |           |                                |           |

Symmetry codes: (i)  $\frac{3}{2} - x, y - \frac{1}{2}, \frac{3}{2} - z$ ; (ii)  $\frac{3}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$ ; (iii)  $x - \frac{1}{2}, \frac{3}{2} - y, z - \frac{1}{2}$ ; (iv)  $\frac{1}{2} - x, y - \frac{1}{2}, \frac{1}{2} - z$ ; (v) x - 1, y, z; (vi) 1 - x, 2 - y, 1 - z; (vii)  $x - \frac{1}{2}, \frac{3}{2} - y, \frac{1}{2} + z$ ; (viii) 1 - x, 1 - y, 1 - z.

©1996 International Union of Crystallography Printed in Great Britain - all rights reserved

Data collection: CAD-4 Software (Enraf-Nonius, 1989), Cell refinement: CAD-4 Software. Data reduction: SHELXTL-Plus XPREP (Sheldrick, 1991). Program(s) used to solve structure: SHELXTL-Plus XS. Program(s) used to refine structure: SHELXTL-Plus XLS. Molecular graphics: SHELXTL-Plus XP. Software used to prepare material for publication: SHELXTL-Plus XPUB.

J-HL thanks the 'région des pays de Loire' for financial support in the form of a Postdoctoral Fellowship.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: DU1131). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

## References

- Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Ichida, H., Nagai, K. N., Sasaki, Y. & Pope, M. T. (1989). J. Am. Chem. Soc. 111, 586-591.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1996). C52, 284-286

## $K_2Mn_3(OH)_2(VO_4)_2$ , a New Two-**Dimensional Potassium Manganese(II)** Hydroxyvanadate

JU-HSIOU LIAO, DOMINIQUE GUYOMARD, YVES PIFFARD AND MICHEL TOURNOUX

Institut des Matériaux, Laboratoire de Chimie des Solides, UMR 110 CNRS-Université de Nantes, 2, rue de la Houssinière, 44072 Nantes CEDEX 03, France. E-mail: piffard@cnrs-imn.fr

(Received 27 March 1995; accepted 26 July 1995)

## Abstract

Trimanganese(II) dipotassium bis(hydroxide) bis(tetraoxovanadate), K<sub>2</sub>Mn<sub>3</sub>(OH)<sub>2</sub>(VO<sub>4</sub>)<sub>2</sub>, has a layered structure. The  $[Mn_3(OH)_2(VO_4)_2]_n^{2n-}$  layers comprise CdI<sub>2</sub>like planes of MnO<sub>4</sub>(OH)<sub>2</sub> octahedra with 1/4 Mn vacancies to which VO<sub>4</sub> tetrahedra are linked on both sides via three vertices; the fourth vertex points into the interlayer space where the K<sup>+</sup> ions are situated.

Acta Crystallographica Section C ISSN 0108-2701 @1996

#### Comment

Two potassium manganese vanadates have already been reported: K<sub>10</sub>Mn<sub>2</sub>V<sub>22</sub>O<sub>64</sub>.20H<sub>2</sub>O and K<sub>5</sub>H<sub>3</sub>Mn<sub>3</sub>V<sub>12</sub>O<sub>40</sub>.-8H2O (Ichida, Nagai, Sasaki & Pope, 1989). Both are heteropolyvanadates containing Mn<sup>IV</sup> cations. The title compound, K<sub>2</sub>Mn<sub>3</sub>(OH)<sub>2</sub>(VO<sub>4</sub>)<sub>2</sub>, was prepared in a basic medium. It has a layered structure built up from MnO<sub>4</sub>(OH)<sub>2</sub> octahedra and VO<sub>4</sub> tetrahedra (Fig. 1). Each  $MnO_4(OH)_2$  octahedron shares four edges with four other octahedra in the same plane thus forming CdI<sub>2</sub>-like layers with 1/4 Mn vacancies. Each hydroxyl O atom [O(1)] is shared by one Mn(1) and two Mn(2) cations. The VO<sub>4</sub> tetrahedra are linked to these  $[Mn_3(vacancy)O_6(OH)_2]_n$  layers on both sides of the Mn vacancies via three O atoms, leading to  $[Mn_3(OH)_2(VO_4)_2]_n^{2n-}$  layers. The fourth vertex points into the interlayer space where the K<sup>+</sup> ions are situated (Fig. 2).



Fig. 1. Perspective  $[100]^*$  view of an  $[Mn_3(OH)_2(VO_4)_2]_n^{2n-}$  layer.



Fig. 2. Perspective [010] view of the layered K<sub>2</sub>Mn<sub>3</sub>(OH)<sub>2</sub>(VO<sub>4</sub>)<sub>2</sub> structure

Each K<sup>+</sup> ion is surrounded by seven O atoms with K—O distances ranging from 2.705(4) to 3.140(1) Å (Table 2). The distances between Mn and the triply bridging hydroxyl O atom [O(1)] are relatively short compared with other Mn-O distances. The shortest V-O distance is to the terminal O atom; this O atom is not bonded to Mn and is only weakly bonded to K. The Mn-O and V-O bonds are unexceptional and correspond well with those typically observed in Mn<sup>II</sup> and  $V^{V}$  oxides.

Bond-valence sum calculations (Brese & O'Keeffe, 1991; Brown & Altermatt, 1985) confirm the oxidation state assignments and allow the identification of O(1)as the hydroxyl O atom. In the difference electrondensity map, a peak 0.993 (2) Å from O(1) was observed and assigned to an H atom. The O(1)-H bond points toward the terminal V—O(3) bond in an adjacent layer, leading to a weak hydrogen bond of 1.869(3) Å (0.19 v.u.) and an O(1)— $H^{...}O(3)$  angle of 161.7 (2)°. O(3) is surrounded by four nearly coplanar K<sup>+</sup> cations, which contribute 0.49 v.u. to the O(3) bond-valence sum (2.07 v.u.).

#### Experimental

Single crystals of K<sub>2</sub>Mn<sub>3</sub>(OH)<sub>2</sub>(VO<sub>4</sub>)<sub>2</sub> were obtained by heating a mixture of  $H_2Mn_4O_9 xH_2O$  (0.207 g, 0.5 mmol),  $V_2O_5$  $(0.364 \text{ g}, 2.0 \text{ mmol}), \text{ K}_2\text{S}_2\text{O}_8 (0.135 \text{ g}, 0.5 \text{ mmol}), 5 \text{ ml} 1 M$ KOH and 5 ml MeOH in an autoclave at 453 K (autogenous pressure) for one week.

#### Crystal data

| $K_2Mn_3(OH)_2(VO_4)_2$         | Mo $K\alpha$ radiation                    |
|---------------------------------|-------------------------------------------|
| $M_r = 506.9$                   | $\lambda = 0.71073 \text{ Å}$             |
| Monoclinic                      | Cell parameters from 25                   |
| C2/m                            | reflections                               |
| a = 15.204 (2) Å                | $\theta = 13.19 - 15.39^{\circ}$          |
| <i>b</i> = 6.1593 (5) Å         | $\mu = 6.52 \text{ mm}^{-1}$              |
| c = 5.3998 (4)  Å               | T = 293  K                                |
| $\beta = 105.401 \ (9)^{\circ}$ | Parallelepiped                            |
| $V = 487.54(8) \text{ Å}^3$     | $0.18 \times 0.08 \times 0.04 \text{ mm}$ |
| Z = 2                           | Orange                                    |
| $D_x = 3.453 \text{ Mg m}^{-3}$ |                                           |
|                                 |                                           |

## Data collection

Enraf-Nonius CAD-4 diffractometer  $\omega$  scans Absorption correction:  $\psi$  scan  $T_{\min} = 0.844, T_{\max} =$ 0.995 2217 measured reflections 1529 independent reflections 1296 observed reflections  $[F > 4\sigma(F)]$ 

#### Refinement

Refinement on F R = 0.040

 $R_{int} = 0.016$  $\theta_{\rm max} = 40.0^{\circ}$  $h = -27 \rightarrow 27$  $k = -1 \rightarrow 11$  $l = -1 \rightarrow 9$ 3 standard reflections monitored every 200 reflections intensity decay: none

 $\Delta \rho_{\text{max}} = 1.78 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\text{min}} = -1.49 \text{ e } \text{\AA}^{-3}$ 

| wR = 0.046<br>S = 1.93<br>1296 reflections<br>50 parameters<br>H atom fixed but included in<br>calculations<br>$w = 1/[\sigma^2(F) + 0.0001F^2]$<br>$(\Delta/\sigma)_{max} = 0.001$ | Extinction correction:<br>Larson (1970)<br>Extinction coefficient:<br>0.0056 (3)<br>Atomic scattering factors<br>from International Tables<br>for X-ray Crystallography<br>(1974, Vol. IV, Table | Enraf-Nonius (19<br>Delft, The Neti<br>Ichida, H., Nagai<br><i>Chem. Soc.</i> 111<br>Larson, A. C. (1<br>Ahmed, S. R.<br>Munksgaard.<br>Sheldrick, G. M<br>Analytical X-ra |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $(\Delta/\sigma)_{\rm max} = 0.001$                                                                                                                                                 | (19/4, Vol. 1V, 1able 2.3.1)                                                                                                                                                                     | Analytical X-ra                                                                                                                                                            |

## Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(A^2)$

 $U_{iso}$  for H atom,  $U_{eq} = (1/3)\sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$  for all others.

|              | x          | у          | z           | $U_{\rm iso}/U_{\rm eq}$ |
|--------------|------------|------------|-------------|--------------------------|
| Mn(1)        | 0          | 0          | 0           | 0.009(1)                 |
| Mn(2)        | 0          | 0.2644 (1) | 1/2         | 0.009(1)                 |
| V            | 0.3793 (1) | 0          | 0.9076(1)   | 0.006 (1)                |
| K            | 0.2622(1)  | 1/2        | 0.7047 (2)  | 0.017 (1)                |
| <b>O</b> (1) | 0.0724 (2) | 0          | -0.2817 (6) | 0.009(1)                 |
| 0(2)         | 0.4145(1)  | 0.2318 (3) | 0.7767 (4)  | 0.010(1)                 |
| 0(3)         | 0.2648 (2) | 0          | 0.8200 (6)  | 0.015 (1)                |
| O(4)         | 0.4149 (2) | 0          | 0.2436 (6)  | 0.009(1)                 |
| H            | 0.1396     | 0          | 0.7920      | 0.050                    |

Table 2. Selected geometric parameters (Å, °)

|                                   | •         | •                                |           |
|-----------------------------------|-----------|----------------------------------|-----------|
| Mn(1)—O(1)                        | 2.101 (3) | K—O(2)                           | 2.786 (2) |
| $Mn(1) \rightarrow O(2^i)$        | 2.245 (2) | K—O(3)                           | 3.140(1)  |
| Mn(2)—O(1 <sup>ii</sup> )         | 2.136 (2) | $K \rightarrow O(2^{v_i})$       | 2.786 (2) |
| Mn(2)O(2 <sup>iii</sup> )         | 2.226 (2) | K—O(3 <sup>vii</sup> )           | 3.140(1)  |
| Mn(2)—O(4 <sup>iv</sup> )         | 2.178 (2) | K—O(3 <sup>viii</sup> )          | 2.705 (4) |
| V—O(2)                            | 1.739 (2) | K—O(3 <sup>iii</sup> )           | 2.753 (3) |
| V—O(3)                            | 1.678 (3) | K—O(4 <sup>iii</sup> )           | 2.781 (3) |
| V—O(2 <sup>v</sup> )              | 1.739 (2) | O(1)—H <sup>ix</sup>             | 0.993 (2) |
| V—O(4 <sup>ii</sup> )             | 1.751 (3) |                                  |           |
| $O(1) - Mn(1) - O(1^{x})$         | 180.0 (1) | $O(1^{ii})$ —Mn(2)— $O(4^{iv})$  | 172.1 (1) |
| $O(1) - Mn(1) - O(2^{i})$         | 87.2 (1)  | $O(1^{x}) - Mn(2) - O(4^{iv})$   | 91.4 (I)  |
| $O(1^{x}) - Mn(1) - O(2^{i})$     | 92.8 (1)  | $O(2^{iii}) - Mn(2) - O(4^{iv})$ | 85.4(1)   |
| $O(2^{i}) - Mn(1) - O(2^{iii})$   | 180.0(1)  | $O(2^{xii}) - Mn(2) - O(4^{iv})$ | 93.8 (1)  |
| $O(2^{i}) - Mn(1) - O(2^{xi})$    | 85.2 (1)  | $O(4^{iv}) - Mn(2) - O(4^{iii})$ | 96.4 (1)  |
| $O(2^{iii}) - Mn(1) - O(2^{xi})$  | 94.8 (1)  | O(2)—V—O(3)                      | 107.1 (1) |
| $O(1^{u}) - Mn(2) - O(1^{x})$     | 80.7(1)   | $O(2) - V - O(2^{v})$            | 110.3 (2) |
| $O(1^{ii})$ —Mn(2)— $O(2^{iii})$  | 94.1 (1)  | $O(2) - V - O(4^{ii})$           | 112.2 (1) |
| $O(1^{x})$ —Mn(2)— $O(2^{iii})$   | 86.8 (1)  | O(3)VO(4 <sup>ii</sup> )         | 107.7 (2) |
| $O(2^{iii}) - Mn(2) - O(2^{xii})$ | 178.8 (1) |                                  |           |

Symmetry codes: (i)  $x - \frac{1}{2}, y - \frac{1}{2}, z - 1$ ; (ii) x, y, 1+z; (iii)  $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$ ; (iv)  $x - \frac{1}{2}, \frac{1}{2} + y, z$ ; (v) x, -y, z; (vi) x, 1 - y, z; (vii) x, 1 + y, z; (viii)  $\frac{1}{2} - x, \frac{1}{2} - y, 2 - z$ ; (ix) x, y, z - 1; (x) -x, -y, -z; (xi)  $\frac{1}{2} - x, y - \frac{1}{2}, 1 - z$ ; (xii)  $x - \frac{1}{2}, \frac{1}{2} - y, z$ .

Data collection: CAD-4 software (Enraf-Nonius, 1989). Cell refinement: CAD-4 software. Data reduction: SHELXTL-Plus XPREP (Sheldrick, 1991). Program(s) used to solve structure: SHELXTL-Plus XS. Program(s) used to refine structure: SHELXTL-Plus XLS. Molecular graphics: SHELXTL-Plus XP. Software used to prepare material for publication: SHELXTL-Plus XPLB.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: DU1128). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

#### References

Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197. Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.

©1996 International Union of Crystallography Printed in Great Britain – all rights reserved Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

- Ichida, H., Nagai, K. N., Sasaki, Y. & Pope, M. T. (1989). J. Am. Chem. Soc. 111, 586-591.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
- Sheldrick, G. M. (1991). SHELXTL-Plus. Release 4.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1996). C52, 286–288

# Tin(II) Oxyhydroxide by X-ray Powder Diffraction

Isaac Abrahams,<sup>a</sup> Susan M. Grimes,<sup>b</sup> Simon R. Johnston<sup>b</sup> and Jonathan C. Knowles<sup>c</sup>

<sup>a</sup>Department of Chemistry, Queen Mary and Westfield College, Mile End Road, London E1 4NS, England, <sup>b</sup>Department of Chemistry, Brunel University, Uxbridge, Middlesex UB8 3PH, England, and <sup>c</sup>IRC in Biomedical Materials, Queen Mary and Westfield College, Mile End Road, London E1 4NS, England

(Received 30 June 1995; accepted 11 September 1995)

## Abstract

The structure of tin(II) oxide hydroxide,  $Sn_6O_4(OH)_4$ , has been refined by Rietveld analysis of X-ray powder diffraction data. Atomic parameters based on the isostructural lead analogue were used in the starting model. The structure was refined in the tetragonal space group  $P\bar{4}2_1c$  with a = 7.9268 (4) and c = 9.1025 (5) Å. The title compound forms clusters of  $Sn_6O_4(OH)_4$  with the Sn atoms in distorted tetragonal pyramidal coordination geometries. Each Sn atom is coordinated to two bridging oxide O and two bridging hydroxy O atoms. The JCPDS file number for  $Sn_6O_4(OH)_4$  is 46-1486.

#### Comment

Tin(II) oxyhydroxide is readily precipitated from mildly alkaline aqueous solutions of stannous salts. Preparation of single crystals of this compound has proved particularly difficult. A single-crystal study has been performed (Howie & Moser, 1968, 1973) which identified a tetragonal structure (space group *P4/mnc*) and the presence of discrete  $Sn_6O_4(OH)_4$  clusters; however, no atomic coordinates were published. The structure of Pb<sub>6</sub>O<sub>4</sub>(OH)<sub>4</sub> has been determined by powder neutron diffraction (Hill, 1985) and similarities in the Xray powder diffraction data for these two compounds indicate that they are isostructural. Structure refinement of  $Sn_6O_4(OH)_4$  has been carried out as part of a gen-